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Abstract

In this paper we present the application of a method, based on the orthogonal transformation, to develop an optimal neural network for
solving the Mixture Problem and a linear systolic to design it is provided. We use a back-propagation neural model for determining and
quantifying the components in a composite spectrum obtained from a given mixture of elements. The spectra of the possible components are
used as the training patterns. The orthogonal transformation used in the present work are the singular value decomposition (SVD) and the QR
with column pivoting factorization (QRcp). An interesting property of the proposed method is related to the possibility of reducing the input
and hidden nodes at least to the number class. This reduction allows us to obtain an optimum VLSI implementation by a linear systolic.
q 1998 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Nowadays in most of signal processing applications
(colorimetry, remote sensing, quality control and many
others) it is necessary to determine and quantify the compo-
nents in a composite spectrum obtained from a given
mixture of elements. This problem is known as theMixture
Problem.

The Mixture Problem may be described formally as
follows: Assuming we are given the spectra of a number
(K) of elements (basic references), we must determine the
unknown composition of acocktail of the mentioned
elements using a radiation spectrum obtained from this
mixture.

To date, some methods have been proposed to solve the
Mixture Problem. Among several approaches, the conven-
tional digital algorithm [1], the optical neural network [2],
the multiple regression algorithm [3] and the HRNN [4]
have been used as powerful tools to find the components
in a composite spectrum and its contributions to the mixture.
In this work we propose the utilization of a back-propaga-
tion (BP) model to solve this problem.

Conventionally a symmetric and homogeneous structure
is used for feedforward neural network (NN) models. To be
representative, the network should have an optimum

number of links, and it does not need to be homogeneous.
The network will be overparametrized if the number of links
is very high. In such cases, if the training set of data is not
noise-free, the NN will try to learn the information along
with the noise in the data, leading to poor validation results.
Two related points are important here:

1. the NN should have optimum number of inputs; and
2. the NN should have an optimum number of links.

It is well known that collinearity between the inputs can
lead to identification problems.

A robust and direct approach for the optimization of the
size of any feedforward network is the use of orthogonal
transformations. Two types of orthogonal transformations
are used, namely the singular value decomposition (SVD)
and QR with column pivoting (QRcp) factorization.

SVD is mainly used for null space detection; QRcp
coupled with SVD is used for subset selection, which is
the key of the design of optimal networks [5].

The BP model is extremely demanding in both computa-
tion and storage requirements. An enormous amount of
computation has to be spent on training the network. In
the retrieving phase, extremely high throughputs are
required for real-time recognition. The attractiveness of
the digital approach to real-time processing hinges upon
its massively parallel processing capability.

The BP algorithm is computationally iterative and inten-
sive, and it demands very high throughput. Multiprocessors,
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array processors and massively parallel processor provide a
natural solution. The BP algorithm can be expressed in the
basic matrix operations, such as inner-product, outer-
product and matrix multiplications, which, in turn, can be
mapped to basic processor arrays, systolic or wavefront
arrays, for instance. They have the following key advan-
tages:

1. The exploitation of pipelining is very natural in regular
and locally connected networks. They yield high
throughput and simultaneously save the cost associated
with communication.

2. They provide a good balance between computation and
communication, which is critical to the effectiveness of
array computing.

The rest of the paper is organized as follows: First, in
Section 2, the application of orthogonal transformations to
reduce the NN size is presented; next, in Section 3, we make
a description of the BP solving the Mixture Problem. The
results obtained are presented and discussed in Section 4
and finally, in Section 5, the details of the proposed systolic
array are related.

2. Application of orthogonal transformations for
reducing the neural network size

Orthogonal transformations can lead to relative decorre-
lation and compaction of information in a data set, which
has several applications. There have been some efforts for
using orthogonal transformations using these transforma-
tions in NN modelling. For example, Karhunen–Loe`ve
transformation (KLT) has been used in image processing
context [6]; principal components analysis (PCA) has
been used for pruning of NNs [7,8]. KLT and PCA are
both eigenvalue based transformations, whereas SVD is
singular value based; it is know that the singular values
can be computed more efficiently with much greater numer-
ical and computational stability than the eigenvalues, and
hence SVD based methods are superior.

The basic principle of NN size reduction is to detect
collinearity between the candidate information sets at
various stages of the network and to eliminate the same.
The use of SVD can cure the numerical ill-conditioning
problems without reduction of the parameter set; but subset
selection and the elimination of the redundant set can solve
numerical problems with consequent reduction in the
network size.

Two basic problems are addressed:

1. which of the candidate inputs to the NNs constitute the
optimal set of inputs and

2. at the hidden layer(s) which links between the post-
hidden layer stage and the subsequent stage should be
retained for representative modelling.

The SVD of anN × M matrix R is given by [9]:

R� USVT �1�
whereN × N matrix U andM × M matrix V are orthogonal
matrices; andS is anN × M matrix given by

S � diag s1;…;sp

n o
: 0

h i
s1 $ s2 $ … $ sp �2�

wherep� min�N; M� ands1, s2;…;sp, are the singular
values. For a small valuee , we can define the rank of the
matrix R, as:

rank�R; 1� � min
R2 B2,1

�rank�B�� �3�

It can be shown that ifqe � rank�R; e� then

s1 $ s2 $ … $ sq1 . sq12i $ sp:

Thus, using SVD, the rank of a given matrix can be
computed.

Contrarily, the QRcp factorization of the matrix is given
by:

QTRP �
S11 S12

0 0

" #N

N2q

�4�

qM 2 q

whereq� rank�R�, matrixQ is orthogonal and matrixS11 is
an upper triangular and singular matrix.

The QRcp provides a basis for:

rn�R� � y [ RN; y� Rx for x [ RM
n o

: �5�
The matrixP provides ther columns inA, which compose
such basis.

The application of the above orthogonal transformation
depends on which nodes are going to be optimized.

Let N × M matrix R comprise the input data set (refer-
ence set), where there areN input nodes andM classes

Optimum number of input nodes
The objective is to determine which of theN variables (or
features) are relatively redundant and hence can be elimi-
nated. Using SVD the optimum number of input nodes (say
l) of a NN for an input data set is determined. QRcp provides
l of the N features for theM sets of data points, which are
enough for correct training and recognition.

Optimum number of hidden links and nodes
Consider a network which has been trained withM input
data sets (reference set). An M × q matrixR* is formed with
theq-pseudo outputs for the concerned hidden layer for each
of theM input data sets. SVD is performed onR* for deter-
mining the number of hidden nodes which are enough for
the given network. Once remaining nodes have been elimi-
nated the reduced-size network is retrained.
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3. BPNN for solving the mixture problem

In order to describe the neural model suggested in the
present work, it must be taken into account that a composite
spectrumx may be seen as anN-dimensionalvector, built
sorting the emission intensities associated to each energy
channel vs. the channel number, whereN is the total number
of energy channels:

x � �x0; x1;…; xN21�T xn � 0 0 # n # N 2 1 �6�
xn being the intensity measured as the number of photons
whose energy is comprised in thenth energy channel’s
interval.

Thus, areference spectrumis a spectrum of the same
nature, but produced by anindividual source. We denote
these spectra asrk with 0 # k # K 2 1. The set of K refer-
ence vectors is called thereference set, and it must be eval-
uated in advance. For the sake of compactness, it is denoted
as areference matrixR composed by the reference column
vectors:

R� �r0; r1;…; rK21�: �7�
In general sense, the set of composite spectra is the set of

all possible spectra that may be produced by a linear combi-
nation of all elements belonging to thereference set. When
the reference setis composed by K linearly independent
vectors, this would result in aK-dimensional vector space,
integrated by all the vectorsy given by:

y� Rc�
XK 2 1

i�0

ciri �8�

wherec is thecontribution vectordefined as:

c� �c0; c1;…; cK21�T ck $ 0 0 # k # K 2 1: �9�
Every contributionci is a function of the relative intensities
of the composite and reference spectra.

Our goal is to estimatec assuming thatR and y are
known, for this we consider an approach based on a feed-
forward NN which uses the BP learning algorithm. The
neural model has a single hidden layer and it is formed
with N linear input nodes andK linear hidden and output
nodes, whereN is the number of energy channels of the
training spectra andK is the number of such spectra.

It is interesting to note that at most onlyK hidden nodes

are needed for the correct learning of the network. It is due
to the fact that SVD gives the optimum number of hidden
nodes as the rank of aK × M matrix,K being the number of
the learning patterns andM the number of hidden nodes
considered first. Hence, if we takeM greater thanK, it can
be always reduced toK. The same is true for input nodes so
N can be reduced toK.

We consider a linear function as activation function and
we take for each training spectrumi, the desired output
vector as�00…1i…0K2i�T.

Once the network has been trained, the outputs for a
spectrumx are given by:

oi �
XK 2 1

j�0

wo
ij hj 0 # i # K 2 1 �10�

where

hj �
XN 2 1

l�0

wh
jl xj 0 # j # K 2 1 �11�

xj is the jth energy channel of the spectrumx, wh
jl is the

connection weight from thelth input node to thejth hidden
node andwo

ij is the connection weight from thejth hidden
node to theith output node.

x1;…; xk are the training spectra. If we consider a mixture
spectrumy given by:

y�
Xk
m�1

cmxm �12�

wherecm is themth training pattern contribution, then the
outputs of the network described above will provide thecms
values. It can be shown as follows:

hj �
XN 2 1

l�0

wh
jl Yj �

XK
m�1

cm

XN 2 1

l�0

wh
jl xmj; �13�

oi �
XK
m�1

cm

XK 2 1

j�0

XN 2 1

l�0

wo
ij w

h
jl xmj �

XK
m�1

cmoim �14�

where oim and xmj are the ith output and thejth energy
channel for the spectrum, respectively. But theith output
is 1 for xi and 0 for each other, so we can conclude that

oi � ci : �15�
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Table 1
Mixture spectrum (30% Mn and 70% Co)

Pattern Contribution
Case (a) 1024× 10× 4 Case (b) 4× 10× 4 Case (c) 4× 4 × 4

Co 70% 0.699999 0.7 0.7
Mn 30% 0.3 0.3 0.299999
Ba 0 0 0
Cs 0 0 0
Iteration number 170 95 90



Once the network was trained, it can be optimized using the
methods SVD and QRcp (explained in Section 2).

4. Experimental results

The method stated above was widely simulated using a
set of 1024 dimensional composite spectra obtained from
individual sources. In order to evaluate it, two sets of exper-
iments were performed. Through the first one, we have
compared the results obtained using different number of
hidden nodes and input nodes. Table 1 shows the results
obtained for a mixture spectrum (which was composed of
30% Mn and 70% Co), using Mn, Ba, Co and Cs as training
patterns. For the case (a) the total channel number (1024)
was used; after applying orthogonal transformations to
reduce the input and hidden nodes, results shown in columns
(b) and (c) were obtained for other channel numbers. In all
the related experiments similar results were found.

An important feature of the explained decomposition
method is its capacity for recognizing very small ratios of
the components that form a mixture spectrum.

We have carried out experiments using spectra of mixture
of two individual sources in different ratios. Fig. 1 shows the
degradation of the precision as a function of the relative
proportions between the components of composite spectra
of two elements. In spite of such degradation, results can be
considered good, even with elements in the ratio of 1:1000.

In Fig. 1 the error was calculated as:

Error�
�����������������X

i

�ci 2 ci* �2
s

�16�

whereci andci* are the known and the obtained contribu-
tion of the ith component, respectively.

In the remainder sets of experiments, we were dedicated
to studying the influence of the different parameters used in
the BPNN model.

5. Linear systolic arrays for the optimized network

The systolic designs exploits the potential of parallel
processing offered by VLSI/ULSI technologies. A very
desirable architecture is based on pipelined processing on
primarily locally interconnected processor elements. To
achieve such a design, dependence-graph-based mapping
methodology is the most effective tool for neural informa-
tion-processing applications [10].

In a general sense, the different phases in the BP proces-
sing, can be implemented in terms of consecutive matrix–
vector multiplications, interleaved with two strips of non-
linear processing units. In our case the non-linear units are
not necessary, because we use nodes with linear activation
function. The neural model proposed is depicted in Fig. 2.
According to the discussions presented in the previous
sections, we have consideredK input, hidden and output
nodes.

Using a systematic mapping methodology for deriving
systolic arrays [10], this model can be mapped into a systolic
array with K process elements (PEs). In order to describe
the data movements and the PEs design requirements we
distinguish between the retrieving and the training phases.

5.1. Retrieving phase

In this phase an input pattern is presented to the network,
and the outputs are calculated, evaluating firstly the hidden
nodes and using them for evaluating the network outputs.

R.M. Pérez et al. / Microelectronics Journal 30 (1999) 77–8280

Fig. 1. Influence of the proportion between components.

Fig. 2. Optimum back-propagation NN for solving the mixture problem.



We consider the net separated as the lower-layer net and the
upper-layer net.

5.1.1. Data movements in linear systolic design
The data movements comprise:

1. The lower-layer net

• The datayi are input sequentially into the first PE in
the original natural order. They are subsequently
propagated downward to all other PEs.

• The weight datawh
jl are stored (row by row) in the PEs.

• When the valueyl arrives at thejth PE (from the top),
it is multiplied with the stored datawh

jl to yield a
partial sumhl to be accumulated in the same PE.

• The PE changes mode (by the control unit) to be ready
for the next (upper-layer) phase.

2. The upper-layer net

• The datahl stays in thejth PE and need not be propa-
gated to other PEs. The weight data of this layer are
stored (column by column) in the PEs.

• Multiply the valueshj andwo
jl , and add the product to

the partial sum received from the upper PE. The new
partial sum is then propagated to the lower PE.

• As soon as the final partial sum is computed at the last
PE, the activation value can be producedsi .

5.1.2. Processor element design requirements
The processor elements comprise the following key

components:

Memory
Each PE should store a row of the lower-layer weight matrix
and a column of the upper-layer weight matrix.

Communication
Data are transmitted in one direction between two neigh-
bouring PEs.

Arithmetic processing
Each PE should support all the arithmetic processing cap-
abilities including the multiply-and-accumulate operations.

5.2. Learning phase

5.2.1. Data movements
In this phase we distinguish three steps:

1. Forward step: The forward step in the learning phase
follows the same data movements as the retrieving opera-
tions described in Section 4. However, it is not necessary
to store the input valuesx in the first PE so that they can
be reused in a latter step.

2. Backward step for the upper-layer net: In this step, both
the BP algorithm and the training are executed:

• Value si is routed by the feedback link to a special
processor above the first PE. At the special processor,
the values (tk 2 sk) are produced.

• After the error value is produced, it is propagated
downward to all the other Pes.

• Data (wo
ij ) andhi are stored in theith PE.

• When the error value arrives at theith PE:
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Fig. 3. Systolic for an optimum BPNN for solving the mixture problem diagram; we depict the elements used during retrieving phase (a) and learning phase (b).
We describe briefly the PEs for the different learning steps, (c) during the feedforward phase and (d) the error feedback propagation and weight modification
calculus.



It is multiplied with the stored datawo
ij , and the

product is added to the partial sum being accumulated
in the same PE. (AfterK active clocks, all the final
partial sums are generated.)
It is also multiplied by valuehi to yield the weight
increments, which is the used to update the new
weight at theith PE.

• The back-propagated error functions can be derived.

3. Training step for the lower-layer weights:

• Recall that valuex was stored in the first PE during the
forward step; now it can be propagated again down-
ward to all the others PEs.

• Whenxj arrives at theith PE, it is multiplied with the
error value to yield the weight increments, which is in
turn used to update the new weight in theith PE.

5.2.2. Process elements design requirements
The process elements comprised basically the same com-

ponents as are required for the retrieving phase. The PEs
should be programmable due to the varying functionalities
involved. Some others differences are discussed as follows:

Memory
This is the same as the retrieving phase. Each PE should
store a row of the lower-layer weights and a column of the
upper-layer weights. In addition, in the first PE, an extra
FIFO is required to recycle thex data for processing.

Communication
It is just like in the retrieving phase. Data transmitted uni-
directionally between neighbouring PEs, and circular link
between the first PE and the last PE is added to facilitate
pipelining.

Arithmetic processing
This includes multiplications, additions and accumulations
operations.

Fig. 3 shows a diagram for explaining the linear array and its
phases. The operation executed by each PE depends on the
actual phase. So, in this figure, we distinguish the retrieving
phase, that coincides with the first step of the learning phase
and is depicted in Fig. 3(c). During this step the hidden-layer
outputs (which are labelled in Fig. 3 as 1) are computed and
stored in AC, in order to obtain the net outputs, from this
hidden outputs (2 in Fig. 3). Fig. 3(d) corresponds with a
description of PEs for computing the error in the output
layer and weight modification step. For the upper subnet, the
propagated signal between each PEO0 corresponds with the
error function;Z corresponds with weight modifications of
this subnet and it serves for calculating the error function in
the lower subnet (in Fig. 3, these operations are labelled as 1).
For the lower subnet (2 in Fig. 3), the propagated signal

between each PEO corresponds with the inputx, that should
be stored into a FIFO. For calculating weight modifications
Z, we must use AC1 that has been previously calculated.

6. Summary and conclusions

In this work, an NN, based on the BP model, has been
introduced for solving the Mixture Problem. We have
shown how this model finds the composition of a mixture
of the spectra used during the training.

In order to reduce the NN size, orthogonal transformations
has been applied, which allows us to optimize the net neuron
number (such as in the hidden layer as in the input layer).

An interesting property related with this optimization is
the redundant information reduction, which allows to
increase the speed of the method and to decrease the execu-
tion time and number of floating point operations.

In this work, we also presented the design of a systolic
array for this optimized network.

In experimental results we have presented the behaviour of
theproposedmethodwithmixturespectraandwehaveshowed
their robustness vs. different ratios of mixture’s components.

This method may be applied to many other problems in
spectroscopy, such as IR and visible spectrum decompo-
sition, with applications in colorimetry, remote sensing of
the Earth’s surface, environmental control, and many others.
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